On weak compactness and countable weak compactness in fixed point theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 3 MEASURES OF WEAK COMPACTNESS AND FIXED POINT THEORY CLEON

In this paper, we study a class of Banach spaces, called φspaces. In a natural way, we associate a measure of weak compactness in such spaces and prove an analogue of Sadovskii fixed point theorem for weakly sequentially continuous maps. A counter-example is given to justify our requirement. As an application, we establish an existence result for a Hammerstein integral equation in a Banach space.

متن کامل

D ec 2 00 3 MEASURES OF WEAK COMPACTNESS AND FIXED POINT THEORY CLEON

In this paper, we study a class of Banach spaces, called φ-spaces. In a natural way, we associate a measure of weak compactness in such spaces and prove an analogue of Sadovskii fixed point theorem for weakly sequentially continuous maps. A counter-example is given to justify our requirement. As an application, we establish an existence result for a Hammerstein integral equation in a Banach space.

متن کامل

Dependent Choices and Weak Compactness

We work in set-theory without the Axiom of Choice ZF. We prove that the principle of Dependent Choices (DC) implies that the closed unit ball of a uniformly convex Banach space is weakly compact, and in particular, that the closed unit ball of a Hilbert space is weakly compact. These statements are not provable in ZF, and the latter statement does not imply DC. Furthermore, DC does not imply th...

متن کامل

Smoothness and Weak* Sequential Compactness

If a Banach space E has an equivalent smooth norm, then every bounded sequence in E* has a weak* converging subsequence. Generalizations of this result are obtained.

متن کامل

On weak compactness in L1 spaces

We will use the concept of strong generating and a simple renorming theorem to give new proofs to slight generalizations of some results of Argyros and Rosenthal on weakly compact sets in L1(μ) spaces for finite measures μ. The purpose of this note is to show that a simple transfer renorming theorem explains why L1(μ)-spaces, for finite measures μ, share some properties with superreflexive spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1996

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-96-03390-4